Induction of cell-proliferation hormesis and cell-survival adaptive response in mouse hematopoietic cells by whole-body low-dose radiation.
نویسندگان
چکیده
Hormesis and a cytogenetic adaptive response induced by low-dose radiation (LDR) have been extensively documented. However, few studies have investigated the induction of an adaptive response by LDR for cell survival in vitro. In the present study, we investigated whether LDR could induce hormesis in hematopoietic cells and the adaptive response of these cells to subsequent high-dose radiation-induced cytotoxic effects. Mice were exposed in whole-body to 0 (as control), 0.05, 0.25, 0.50, 0.75, and 1.00 Gy of X-rays. They were killed 12, 24, 48, and 72 h later to observe the stimulating effect of LDR on total bone marrow cells per femur and bone marrow progenitor, colony-forming unit-granulocyte-macrophage (CFU-GM). Exposure to 0.5 Gy of X-rays resulted in significantly stimulating effects on both parameters with a maximum effect at 48 h, showing a cell-proliferation hormesis. In the next experiment, mice were irradiated by 0.5 Gy X-rays as an adaptive exposure (D1), and 6, 12, 24, 48, and 72 h later, they were exposed to 6 Gy X-rays as a challenging exposure (D2). Forty-eight h after D2, cytotoxic effects were analyzed using peripheral blood cells (red blood cells, white blood cells, and platelets) and bone marrow cells (total bone marrow cells of the femur, and bone marrow progenitors such as CFU-GM and erythroid burst-forming unit, BFU-E). An adaptive response to D2-induced cytotoxic effect, named as the cell-survival adaptive response, was found in both peripheral blood cells and bone marrow cells when D1 and D2 exposures were given at intervals of 24-48 h. These results suggested that LDR could induce both cell-proliferation hormesis and cell-survival adaptive response to subsequent high-dose radiation in bone marrow cells. It may be of potential importance, if this phenomenon is confirmed clinically, since it may be applied to reduce the adverse effect of radiotherapy.
منابع مشابه
Intermittent low dose irradiation enhances the effectiveness of radio-therapy for human breast adenocarcinoma cell line MDA–MB–231
Introduction: Hormesis and adaptive responses are two important biological effects of low-dose ionizing radiation (LDIR) in organism and mammalian cell lines. Notably, LDIR generates distinct biological effects in cancer cells from normal cells, e.g., it may affect the growth of cancer cells via the activation of certain cell signaling pathway, which does not exist in normal ...
متن کاملEffects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells
Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...
متن کاملAssessment of the role of specific absorption rate of mobile phones on the induction of microwave-induced survival adaptive responses after exposure to lethal doses of gamma radiation
Background: Whether exposure to common electromagnetic fields affects human health adversely has been a controversial issue. The main goal of this study was to assess the role of 900 MHz microwave radiations with different specific absorption rates (SARs), emitted from some widely used cell phones, on the induction of adaptive response in male Balb/c mice after receiving a lethal dose of gamma ...
متن کاملDose Response of MTLn3 Cells to Serial Dilutions of Arsenic Trioxide and Ionizing Radiation.
MTLn3 cells derived from mouse mammary epithelium are known to be highly malignant and are resistant to both radio- and chemo-therapy. We exposed MTLn3 cells to various doses of inorganic Arsenic trioxide (As2O3) in combination with ionizing radiation. Cells were treated with a series of As2O3 concentrations ranging from 20 μM to 1.22 nM for 8 hour, 24 hour and 48 hour periods. Post-treated cel...
متن کاملEffect of low dose radiation on differentiation of bone marrow cells into dendritic cells.
Low dose radiation has been shown to be beneficial to living organisms using several biological systems, including immune and hematopoietic systems. Chronic low dose radiation was shown to stimulate immune systems, resulting in controlling the proliferation of cancer cells, maintain immune balance and induce hematopoietic hormesis. Since dendritic cells are differentiated from bone marrow cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2000